Your ventilation system should be installed in conformance with the appropriate provincial/state requirements or, in the absence of such requirements, with the current edition of the National Building Code, and / or ASHRAE’s “Good Engineering Practices”.

United States
10048 Industrial Blvd., Lenexa, KS, 66215
Tel.: 800.747.1762 • Fax: 800.487.9915

Canada
50 Kanalflakt Way, Bouctouche, NB, E4S 3M5
Tel.: 800.565.3548 • Fax: 877.747.8116

Fantech reserves the right to modify, at any time and without notice, any or all of its products’ features, designs, components and specifications to maintain their technological leadership position. Please visit our website www.fantech.net for more detailed technical information.
PLEASE READ ND SAVE THESE INSTRUCTIONS

Before installation careful consideration must be given to how this system will operate if connected to any other piece of mechanical equipment, i.e. a forced air furnace or air handler operating at a higher static pressure. After installation, the compatibility of the two pieces of equipment must be confirmed by measuring the airflow of the Energy Recovery Ventilator using the balancing procedure found in this manual. It is always important to assess how the operation of any ERV may interact with vented combustion equipment (i.e. Gas Furnaces, Oil Furnaces, Wood Stoves, etc.)

Products are designed and manufactured to provide reliable performance, but they are not guaranteed to be 100% free of defects. Even reliable products will experience occasional failures, and this possibility should be recognized by the user. If these products are used in a life support ventilation system where failure could result in loss or injury, the user should provide adequate back-up ventilation, supplementary natural ventilation or failure alarm system, or acknowledge willingness to accept the risk of such loss or injury.

Your ventilation system should be installed in accordance with the local building code that is in effect, in absence of such requirements, it is recommenced to check with local authorities having jurisdiction in your area prior to installing this product.
ERN ducting for fully Dedicated System

INSTALLATION EXAMPLES

Example only – duct configuration may differ depending on the model.

FULLY DEDICATED SYSTEM
BEST FOR NEW CONSTRUCTION

1. Stale air is drawn from key areas of the home requiring local exhaust (bathroom, kitchen, laundry room).
2. Fresh air is distributed directly to habitable rooms in the house (bedrooms, living room).
3. The ERV’s airflow must be balanced after installation using the procedure found in the section “AIRFLOW BALANCING”.

Suggested installation for:
- Hydronic baseboard
- Infloor heating
- Electric baseboard
- Mini split heat pump

Benefits:
Provides the best fresh air distribution in the house; lowest operation cost since the furnace/air handler unit is not needed.

DETERMINING YOUR AIRFLOW REQUIREMENT

Room Count Method

<table>
<thead>
<tr>
<th>Room classification</th>
<th>Number of rooms</th>
<th>CFM (L/s)</th>
<th>CFM Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master bedroom</td>
<td></td>
<td>x 10 L/s (20 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Basement</td>
<td>yes or no</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Bedrooms</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Living room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Bathroom</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Laundry room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Utility room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
</tbody>
</table>

**Total Ventilation Requirements (add last column) =

ASHRAE method

Ventilation Air requirements

<table>
<thead>
<tr>
<th>Floor area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
<td>L/s</td>
<td>m²</td>
<td>L/s</td>
<td>m²</td>
<td>L/s</td>
</tr>
</tbody>
</table>
| <500 | 30 | 128 | 18 | 45 | 21 | 50 | 25 | 60 | 28 | =
| 501-1000 | 45 | 21 | 53 | 24 | 60 | 28 | 68 | 31 | 75 | 35 |
| 1001-1500 | 60 | 29 | 68 | 31 | 75 | 35 | 90 | 42 | =
| 1501-2000 | 75 | 35 | 83 | 38 | 90 | 42 | 99 | 45 | 105 | 49 |
| 2001-2500 | 90 | 42 | 98 | 45 | 105 | 49 | 113 | 52 | 120 | 56 |
| 2501-3000 | 105 | 49 | 113 | 52 | 120 | 56 | 128 | 59 | 135 | 63 |
| 3001-3500 | 120 | 56 | 128 | 59 | 135 | 63 | 143 | 66 | 150 | 70 |
| 3501-4000 | 135 | 63 | 143 | 66 | 150 | 70 | 159 | 73 | 165 | 77 |
| 4001-4500 | 150 | 70 | 158 | 73 | 165 | 77 | 173 | 80 | 180 | 84 |
| 4501-5000 | 165 | 77 | 173 | 80 | 180 | 84 | 188 | 87 | 195 | 91 |

* ASHRAE 62.2-2016 Table 4.1, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.

ERV ducting for fully Dedicated System

- **Fresh air from outside**
- **Stale air from inside**
- **Fresh air to living areas**
- **Stale air to outside**

Room Count Method

1 CFM = 0.47 L/s
1 L/s = 2.13 CFM

ASHRAE method

<table>
<thead>
<tr>
<th>Room classification</th>
<th>Number of rooms</th>
<th>CFM (L/s)</th>
<th>CFM Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master bedroom</td>
<td></td>
<td>x 10 L/s (20 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Basement</td>
<td>yes or no</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Bedrooms</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Living room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Bathroom</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Laundry room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Utility room</td>
<td></td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
</tr>
</tbody>
</table>

**Total Ventilation Requirements (add last column) =

ASHRAE method

<table>
<thead>
<tr>
<th>Floor area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
<td>L/s</td>
<td>m²</td>
<td>L/s</td>
<td>m²</td>
<td>L/s</td>
</tr>
</tbody>
</table>
| <500 | 30 | 128 | 18 | 45 | 21 | 50 | 25 | 60 | 28 | =
| 501-1000 | 45 | 21 | 53 | 24 | 60 | 28 | 68 | 31 | 75 | 35 |
| 1001-1500 | 60 | 29 | 68 | 31 | 75 | 35 | 90 | 42 | =
| 1501-2000 | 75 | 35 | 83 | 38 | 90 | 42 | 99 | 45 | 105 | 49 |
| 2001-2500 | 90 | 42 | 98 | 45 | 105 | 49 | 113 | 52 | 120 | 56 |
| 2501-3000 | 105 | 49 | 113 | 52 | 120 | 56 | 128 | 59 | 135 | 63 |
| 3001-3500 | 120 | 56 | 128 | 59 | 135 | 63 | 143 | 66 | 150 | 70 |
| 3501-4000 | 135 | 63 | 143 | 66 | 150 | 70 | 159 | 73 | 165 | 77 |
| 4001-4500 | 150 | 70 | 158 | 73 | 165 | 77 | 173 | 80 | 180 | 84 |
| 4501-5000 | 165 | 77 | 173 | 80 | 180 | 84 | 188 | 87 | 195 | 91 |

* ASHRAE 62.2-2016 Table 4.1, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.

Bathroom: If the ERV is going to provide the required local exhaust ventilation for each bathroom with each a continuous 20 CFM (10 L/s), this ventilation rate can be considered as part of the whole building ventilation rate.
INSTALLATION EXAMPLES (CONT’D)

DIRECT CONNECTION of the FRESH air to living area to the RETURN PLENUM of the AIR HANDLER (Stale air drawn from key areas of home)

PARTIALLY DEDICATED SYSTEM (BETTER)

1. In order to provide proper distribution of the fresh air, it is recommended that the furnace blower be set to run continuously or interconnected with ERV. See furnace electrical connection on page 17.
2. Stale air is drawn from key areas of the home (bathroom, kitchen, laundry room).
3. Fresh air is supplied to the return air plenum of the furnace.
4. Due to the difference in pressure between the ERV and the equipment it is being connected to the ERV’s airflow must be balanced on site, using the procedure found in the section “AIRFLOW BALANCING.”

S In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock

ERV/ Furnace ducting for Partially Dedicated System

INSTALLATION EXAMPLES (CONT’D)

DIRECT CONNECTION of both the ERV SUPPLY AIR STREAM and EXHAUST AIR STREAM to the FURNACE COLD AIR RETURN

SIMPPLIED INSTALLATION (GOOD) (RETURN/RETURN METHOD) - OPTION 1

1. Furnace blower must operate when ventilation from ERV is required. The furnace should be set to run continuously or interlocked with ERV. See furnace electrical connection on page 17.
2. A minimum separation of 1m (39”) is recommended between the two direct connections.
3. In order to prevent exhausting any fresh air, the ERV’s exhaust air connection should be upstream of the ERV’s supply air connection when drafting to the furnace’s cold air return.
4. Due to the difference in pressure between the ERV and the equipment it is being connected to the ERV’s airflow must be balanced on site, using the procedure found in the section “AIRFLOW BALANCING.”

S In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock

ERV/ furnace for Simplified Installation – Option 1

Suggested installation for:
- Central furnace (air handling unit or central air conditioners)
- When ducting fresh air to living area is not possible or practical, i.e. expensive or when the central AHU will operate year-round.

Benefits: Conditions the fresh air prior to distributing it throughout the house

Fantech energy recovery ventilators (ERV) that use a supply fan shutdown for frost prevention do not include an outdoor air motorized damper. If you are using a simplified installation, i.e. connecting the ERV supply air duct to a furnace’s return air duct, the ERV must operate continuously.

When the ERV is turned off, no warm exhaust air will flow through the ERV but the furnace’s fan will continue to draw in outdoor air directly into the furnace. If it’s cold outside, cold air will be introduced, without re-heating, directly into the furnace.

If the ERV is installed such that the homeowner may turn off the ERV during the winter, we recommend installing a motorized damper between the ERV's supply air and the furnace's return air duct that closes when the ERV is not operating. See wiring diagram (Figure 1).

Figure 1

Transformer and Damper motor not included.

Fantech energy recovery ventilators (ERV) that use a supply fan shutdown for frost prevention do not include an outdoor air motorized damper. If you are using a simplified installation, i.e. connecting the ERV supply air duct to a furnace’s return air duct, the ERV must operate continuously.

When the ERV is turned off, no warm exhaust air will flow through the ERV but the furnace’s fan will continue to draw in outdoor air directly into the furnace. If it’s cold outside, cold air will be introduced, without re-heating, directly into the furnace.

If the ERV is installed such that the homeowner may turn off the ERV during the winter, we recommend installing a motorized damper between the ERV's supply air and the furnace's return air duct that closes when the ERV is not operating. See wiring diagram (Figure 1).

Figure 1

Transformer and Damper motor not included.
Simplified Installation (Good) Option 2

1. Furnace blower must operate when ventilation from ERV is required. The furnace should be set to run continuously or interlocked with ERV. See furnace electrical connection on page 17.

2. Due to the differences in pressure between the ERV and the equipment it is being connected to, the ERV’s airflow must be balanced on site, using the procedure found section “Airflow Balancing”.

* In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock.

ERV/Furnace Ducting for Simplified Installation - Option 2

1. Furnace blower should operate continuously when ventilation from ERV is required. See furnace electrical connection on page 17.

2. Due to the differences in pressure between the ERV and the equipment it is being connected to, the ERV’s airflow must be balanced on site, using the procedure found section “Airflow Balancing”.

* In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock.

Fantech energy recovery ventilators (ERV) that use a supply fan shutdown for frost prevention do not include an outdoor air motorized damper. If you are using a simplified installation, i.e. connecting the ERV supply air duct to a furnace’s return air duct, the ERV must operate continuously. When the ERV is turned off, no warm exhaust air will flow through the ERV but the furnace’s fan will continue to draw in outdoor air directly into the furnace. If it’s cold outside, cold air will be introduced, without re-heating, directly into the furnace.

If the ERV is installed such that the homeowner may turn off the ERV during the winter, we recommend installing a motorized damper between the ERV’s supply air and the furnace’s return air duct that closes when the ERV is not operating. See wiring diagram (Figure 1).

Figure 1

* Transformer and Damper motor not included

Suggested installation for:

- When bathroom and kitchen already have local exhaust system
- May be suitable for retrofitting

Benefits: Least expensive installation type

EXTERIOR DUCTING INSTALLATION

WEATHERHOOD LOCATION

- Decide where your intake and exhaust hoods will be located.

Locating the Intake Weatherhood

- Should be located upstream (if there are prevailing winds) from the exhaust outlet.
- At a minimum distance to 900 mm (36") away from dryer vents and furnace exhaust, medium or high efficiency furnaces, driveways, oil fill pipes, gas meters, or garbage containers.
- At a minimum height of 460mm (18") above the ground, or above the level of expected snow accumulation.
- Ideally, keep weatherhoods 1m (3') from corners.
- Do not locate in the garage, attic, crawl space, or underneath deck.

Locating the Exhaust Weatherhood

- At least 460mm (18") above ground or above the depth of expected snow accumulation.
- Ideally, keep weatherhoods 1m (3') from corners.
- Not near a gas meter, electric meter or a walkway where fog or ice could create a hazard.
- Do not locate in a garage, workshop or other unheated space.

INSTALLING THE DUCTING TO THE WEATHERHOODS

A well-designed and installed ducting system will allow the ERV to operate at its maximum efficiency. The inner liner of the flexible insulated duct must be secured to the sleeve of the weatherhood (as close to the outside as possible) and to the appropriate duct connection on the ERV. The insulation should remain full and not crushed. The outer liner, which acts as a vapor barrier, must be completely sealed to the outer wall and the ERV using tape and/or caulking. A good bead of high-quality caulking (preferably acoustical sealant) will seal the inner flexible duct to both the ERV duct connection and the weatherhood prior to securing them.

To minimize airflow restriction, the flexible insulated duct that connects the two outside weatherhoods to the ERV should be stretched tightly and be as short as possible.

Twisting or folding the duct will severely restrict airflow.

See “Installation Diagram Examples” for installation examples.

STEPS FOR HOOD INSTALLATION:

1. Using the duct connection of the outside hood, outline the intake & exhaust holes to be cut. The holes should be slightly larger than the duct connection to allow for the thickness of the insulated flexible duct. Cut a hole for both the intake and exhaust hoods.

2. Pull the insulated flexible duct through the opening until it is well extended and straight. Slide the duct’s inner vinyl sleeve over the hood duct connection and secure. Pull the insulation over the duct and pull the vapor barrier over the sleeve. Secure with appropriate tape or sealant.

3. Push the hood into the opening and then attach the hood to the outside wall with mounting screws. Repeat the installation procedure for both the supply and exhaust hoods.

4. Using a caulking gun, seal around both hoods to prevent any leaks.
INTERIOR DUCTING INSTALLATION

- To maximize airflow through the ductwork system, all ducts should be kept short and have as few bends or elbows as possible.
- 45° elbows are preferable to 90° elbows.
- Use “Y” ducts instead of “T” ducts wherever possible.
- All duct joints must be fastened with screws or duct sealant and wrapped with aluminum foil duct tape to prevent leakage.
- Galvanized ducting from the ERV to the living areas in the house is recommended whenever possible, although flexible ducting can be used in moderation when necessary.
- To avoid possible noise transfer through the ductwork system, a short length (approximately 300mm, 12”) of nonmetallic flexible insulated duct should be connected between the ERV and the supply/exhaust ductwork system.
- The main supply and return line to/from the ERV must have the same diameter as the duct connection or larger.
- Branch lines to the individual rooms may be as small as 100mm (4”).

INSTALLING DUCT TO ERV

For flexible duct installation, slide flexible ducting onto duct connection. Then install a cable tie over flexible duct to prevent leakage between the ducting and the duct connection.

In the case of solid ducting, slide duct over duct connection, screw in place and seal.

SUPPLY AIR GRILLES LOCATION

In homes without a forced air furnace, fresh air should be supplied to all habitable rooms, including bedrooms and living areas. It should be supplied from high wall or ceiling locations. Grilles that diffuse the air comfortably are recommended. In homes with a forced air furnace, you may want to connect the ERV to the furnace ductwork (see information below).

EXHAUST AIR GRILLES LOCATION

The stale air exhaust system is used to draw air from the points in the house where the worst air quality problems occur. It is recommended that return air ducts be installed in the bathroom, kitchen, and laundry room. Additional return air ducts from strategic locations may be installed. The furnace return duct may also be used to exhaust from. In this method, the exhaust air is not ducted back from bathrooms, kitchens, etc to the ERV with “dedicated lines”.

As per building codes and installation requirements for combustion appliances: Air return ducts, or openings for air return, should not be placed in enclosed spaces containing combustion appliances that are subject to spillage.

ERV INSTALLATION

LOCATION

The ERV must be located in a conditioned space where it will be possible to conveniently service the unit. Typically the ERV would be located in the mechanical room or an area close to the outside wall where the weatherheads will be mounted. If a basement area is not convenient or does not exist, a utility room may be used.

Attic installation must meet the following conditions:

- Attic temperature must be above freezing conditions at all times and for best performance should be 12°C (54 °F).
- The condensate drain (if included) must be installed so that the condensate drains and is protected from freezing.
- The attic is easily accessible for equipment maintenance and inspection.

Connecting appliances to the ERV is not recommended. These include:

- Clothes dryer
- Range top
- Stovetop fan
- Central vacuum system
- Bathroom exhaust fans unless they are specifically designed for this purpose

These appliances may cause lint, dust or grease to collect in the ERV, damaging the unit.

Mounting- Chain mount

1. Place fastening hooks on the strapping board or the floor joists.
2. Attach a hanging chain (provided) to each 19 mm (3/4”) bolt (provided) in the top 4 corners of the unit and tighten.
3. Hang the unit by slipping a link onto the hanging hooks, making sure the unit is level.
4. Install a spring on each chain. Hook the spring in the links so a loop is created in the chain. The spring will then support the unit’s weight and absorb vibrations.

Connecting any of these types of appliances to the ERV will void your warranty.
INSTALLING DRAIN LINE

Through normal operation and during its defrost mode, the ERV may produce some condensation. This water should flow into a nearby drain, or be taken away by a condensate pump. The ERV and all condensate lines must be installed in a space where the temperature is maintained above the freezing point.

A "P" trap should be made in the drain line. This will prevent odors from being drawn back up into the unit.

The drain nipple is placed upside down in the unit to prevent it being damaged during shipping or the installation of the unit.

1. Remove the nutsert.
2. Invert the drain nipple. Make sure to place gasket between the unit and the drain nipple inside the unit.
3. Secure the drain nipple using the nutsert.
4. Install the drain hose making a "P" trap, secure the condensate line drain connection using the tube clamp provided. Fill the condensate line with water.

If outdoor air temperature is above 32°F (0°C) at the extract air (30% RH/72°F, 30% RH/22°C), no drain line installation is required. If this is the case keep the drain spout as shipped from factory with the cap.

AIRFLOW ADJUSTMENT & BALANCING

BALANCING THE AIRFLOWS IS CRUCIAL TO ENSURE OPTIMAL OPERATION OF THE UNIT. IF THE AIRFLOW IS NOT PROPERLY BALANCED, THE FOLLOWING ISSUES MAY OCCUR:

- Significant positive or negative pressure inside the house
- Unit's efficiency may be negatively affected
- Unit's defrost may not work effectively
- Can lead to air leaks or backdrafting of any combustion appliances.

The airflow adjustment and balancing procedure consists of adjusting the fresh airflow to make sure it meets the requirements for the building and then balance the system to make sure there is an equal amount of stale air being exhausted. In the case that the airflow is not exactly the same, it is recommended to have a higher stale airflow of up to 10% in colder climates to ensure that the temperature of the fresh airflow coming from the outside is as close to the room temperature as possible.

GENERAL PREPARATION:

Before performing the adjustment and balancing for unit, make sure to check the following:

- Seal all the ductwork
- Fully open all dampers (if present)
- Turn off all other exhaust appliances such as range hood, dryers, bathroom fans, etc.
- If performing balancing during cold weather, make sure the unit is not operating in defrost mode.
- If the installation type is Simplified or Partially Dedicated, make sure that the furnace/air handler blower is operating at normal speed during the balancing sequence.
- When reading with a mechanical type manometer (Magnehelic), make sure the manometer is placed on a level surface

For optimal performance, ERV unit should be re-balanced after a major renovation or after the installation of extra grilles or registers.

- In cold climates, continuous excessive positive pressure inside the house may drive moisture inside the external walls of the house. Moisture present inside the external wall may condense if the outside temperature is cold enough and can cause damage to structural components. A symptom of excessive positive pressure inside a house is frozen door locks.
- Continuous excessive negative pressure can have undesirable effects. In some geographic locations, negative pressure can increase the infiltration of soil gases such as methane and radon. Negative pressure is also undesirable where combustion equipment is present and may cause back drafting of the combustion gases.

ADJUSTING AIRFLOWS USING INTEGRATED BALANCING SYSTEM

Adjustable dampers are integrated into the Fresh Air to Building and the Stale Air to Outside duct connections. These dampers replace the installation of separate back draft and balancing dampers in the duct line.

The integrated dampers are preset at the fully opened position. In order to reduce the amount of airflow, turn the adjustable lever using a flat screwdriver by turning it counter clock wise. Turning the lever clockwise may damage the plastic screw head. Follow the balancing steps to properly adjust the airflow.
BALANCING STEPS

Use balancing chart located on the door of the ERV

STEP #1: Identify the desired airflow using the provided chart. From the desired airflow (left column) identify the pressure reading needed by simply following the line. Make sure to set the unit at the Normal speed before performing the next step.

STEP #2: Measure the pressure reading by connecting a manometer on the LOW and HIGH pressure ports located on the duct connection. Refer to Illustration #1. If the pressure reading is LOWER than the desired value, adjust the balancing dampers by turning the adjustable arm counter clockwise until the correct corresponding pressure value is reached. Refer to Illustration #2. Do the same for both the SUPPLY and EXHAUST airflows. If the pressure reading is HIGHER than desired when the damper is fully opened, please check the distribution system for any anomalies that could increase the resistance in the distribution system.

STEP #3: Secure the adjustable arm by tightening the set screw as shown in Illustration #3.

- If the house is tightly sealed, adjusting one airflow may affect the other airflow as well. It is recommended to check each airflow again to make sure the value did not change dramatically during the balancing procedure. Make adjustments as necessary.
- The pressure reading from the duct connection refers to the total pressure loss from the distribution system. A well designed distribution system should have a total pressure loss between 0.4” (100Pa) and 0.6” (150Pa). The pressure reading can therefore be used to troubleshoot distribution system. If the pressure reading is higher than 0.6” (150Pa), we recommend that you inspect the system and check for closed grilles, blocked exterior hoods or twisted flexible duct.

Low Voltage Control Systems

* Please see instruction manuals for individual controls for proper wiring and set up of control systems.

CENTRAL CONTROLS

These control systems can only be used individually.

<table>
<thead>
<tr>
<th>CONTROLS</th>
<th>FEATURES</th>
<th>CONNECT TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO-Touch®</td>
<td>• Our most complete, yet easy to use control system. • Sleek design with backlight touchscreen LCD • ECO mode selects the best operating mode and speed for the season, minimizing energy use associated with ventilation. • Set preferred indoor relative humidity range and ventilation mode for day and night conditions. • No battery to replace, all programmed settings are retained during power outage. • Maintenance reminder indicator. • Error code messages reduce troubleshooting time.</td>
<td>W</td>
</tr>
<tr>
<td>EB7</td>
<td>• MODU button provides 3 modes of operations: Ventilation, Recirculation and Standby. • User selected fan speed: Reduced, Medium, Normal and 20 minutes per hour. • AUTO setting allows the homeowner to deactivate the dehumidistat. • When the humidity exceeds the desired setpoint, the ventilation system operates at Normal speed. • Once the desired humidity level is achieved, your ventilation system resumes to its previous mode of operation.</td>
<td>W</td>
</tr>
<tr>
<td>EB7</td>
<td>• Press button once for continuous Reduced speed. • Press button twice and the unit will cycle 20 minutes ON/40 minutes OFF and repeat.</td>
<td>W</td>
</tr>
<tr>
<td>EB7</td>
<td>• Press button a third time and the system will run continuously on HIGH speed.</td>
<td>W</td>
</tr>
</tbody>
</table>

1. Ensure that unit is not plugged when connecting the control.
2. Recirculation mode is only available with the “R” suffix at the end of the model number.

15
As per building codes and installation requirements for combustion appliances: Air return ducts, or openings for air return, should not be placed in enclosed spaces containing combustion appliances that are subject to spillage.
ERV MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Maintenance Required</th>
<th>Recommended Frequency</th>
<th>Date Maintenance Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check and Clean Filters</td>
<td>Every 3 months or if dirty</td>
<td></td>
</tr>
<tr>
<td>Check Energy Recovery Core</td>
<td>Every 6 months</td>
<td></td>
</tr>
<tr>
<td>Check Drain Pan and Lines</td>
<td>Every 3 months</td>
<td></td>
</tr>
<tr>
<td>Vacuum the Inside of the Unit</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Clean and Un-block Outside Hoods</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Clean and Inspect Duct Work</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>General Servicing by a Qualified Contractor</td>
<td>Annually</td>
<td></td>
</tr>
</tbody>
</table>

Note: It is best to get the unit checked by a certified HVAC Contractor/Technician.

Limited Warranty

- The Energy recovery core has a limited 5 year warranty.
- The warranty is limited to 5 years on parts and 7 years on labor from the date of purchase, including parts replaced during this time period. If there is no proof of purchase available, the date associated with the serial number will be used for the beginning of the warranty period.
- The face found in all Fantech ERVs require no lubrication, and are factory balanced to prevent vibration and promote silent operation.
- The limited warranty covers normal use. It does not apply to any defects, malfunctions or failures as a result of improper installation, abuse, mishandling, misapplication, fortuitous occurrences or any other circumstances outside Fantech’s control.
- Inappropriate installation or maintenance may result in the cancellation of the warranty.
- Any unauthorized work will result in the cancellation of the warranty.
- Fantech is not responsible for any incidental or consequential damages incurred in the use of the ventilation system.
- Fantech reserves the right to supply refurbished parts as replacements.
- Transportation, removal and installation fees are the responsibility of the purchaser or in the general area.
- Fantech is not responsible for providing an authorized service centre near the purchaser or in the general area.
- The warranty is limited to 5 years on the fans, 7 years on the energy recovery core, and 5 years on all other warranties.

Problem

Air is too dry

Causes

- Dehumidistat control is set too low
- ERV out of balance

Solutions

- Increase the desired level of humidity. Change ventilation mode from continuous mode to standby.
- Have contractor balance ERV airflows.

Air is too humid

Causes

- Dehumidistat control is set too high
- Sudden change in temperature
- Storing too much wood for heating

Solutions

- Reduce the desired level of humidity. Combine this step with the use of continuous exchange mode.
- Wait until outside temperature stabilizes (winter). Heating will also improve situation.
- Store a majority of your wood outside. Even dried, a cord of wood contains more than 30 gallons of water.

Persistent condensation on window

Causes

- Improper adjustment of dehumidistat control
- ERV out of balance
- Poor air circulation near windows

Solutions

- Have contractor balance ERV airflows.
- Open the door or install a grill on the door.
- Tape any holes or tears made in the outer duct covering.

Poor Air Flows

Causes

- Air vent exhaust is inside home
- Core obstructed
- Filters plugged

Solutions

- Make sure the dryer vent is exhausting outside.
- Remove and clean core.
- Remove and clean filter.

Poor Pressure

Causes

- ERV airflow improperly balanced
- Ductwork has fallen down or been disconnected from ERV

Solutions

- Have contractor balance ERV airflows.
- Have contractor reconnect ducting.

ERV:

Location of supply grilles, the airflow may irritate the occupant

Solutions

- Locate the grilles high on the walls or under the baseboards, install ceiling mounted diffuser or grilles so as not to directly spill the supply air on the occupant.
- Turn down the ERV supply speed. A small duct heater (1kw) could be used to temper the supply air.
- Placement of furniture or closed doors is restricting the movement of air in the general area.

ERV:

Outdoor temperature extremely cold

Solutions

- If supply air is ducted into furnace return, the furnace fan may need to run continuously to distribute ventilation air comfortably.

ERV:*

ERV airflow is improperly balanced

Solutions

- Have contractor balance ERV airflows.

ERV:*

ERV and/or Ducts Tracing up

Solutions

- Note: minimal frost build-up is expected on the core before unit includes defrost cycle functions.

ERV:*

Condensation or Ice Build up in Insulated Duct to the Outside

Solutions

- Tape and seal all joints.

Note: It is best to get the unit checked by a certified HVAC Contractor/Technician.
ERV core washing instructions

For proper maintenance of your energy recovery core please follow these instructions:

1. Remove both filters by sliding them out.
2. Remove the core from the unit.
3. With one of your core’s air inlets facing down, place it in a large sink, bathtub, or shower.
4. Pour clean tap water through the face of the core facing upwards until it runs clear. Ensure the entire surface is rinsed.
5. Rotate the core so that its other air inlet is facing down and repeat step 5.
6. With plates still oriented vertically allow the core to dry, normally 2-3 hours.
7. Slide back the core into the unit.
8. Replace both filters.

Parts list

<table>
<thead>
<tr>
<th>BOM #</th>
<th>Description</th>
<th>VER 100 (01220)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R2E 175 Radical, Rep. Kit</td>
<td>427038</td>
</tr>
<tr>
<td>2</td>
<td>Electrostatic Filters Kit</td>
<td>405577</td>
</tr>
<tr>
<td>3</td>
<td>Heat Recovery Cell 8.5” x 8.5” x 12”</td>
<td>427028</td>
</tr>
<tr>
<td>4</td>
<td>Wing Screw 10-32</td>
<td>412070</td>
</tr>
<tr>
<td>5</td>
<td>Capacitors 6uF</td>
<td>411222</td>
</tr>
<tr>
<td>6</td>
<td>Kit/PCB Replacement,Board,AC</td>
<td>422677</td>
</tr>
<tr>
<td>7</td>
<td>Door Switch</td>
<td>410867</td>
</tr>
<tr>
<td>8</td>
<td>Auto-Transformer</td>
<td>411963</td>
</tr>
<tr>
<td>9</td>
<td>Control Switch</td>
<td>410213</td>
</tr>
<tr>
<td>10</td>
<td>Kit Drain Plug</td>
<td>403015</td>
</tr>
<tr>
<td>11</td>
<td>Collar 5”, Oval, w/Stop</td>
<td>412826</td>
</tr>
<tr>
<td>12</td>
<td>Collar 5”, Oval, w/o/Stop</td>
<td>412827</td>
</tr>
<tr>
<td>13</td>
<td>Screw, Set, Slotted, 8-32 x 5/16”</td>
<td>412806</td>
</tr>
<tr>
<td>14</td>
<td>Cap, w/Tab, Plastic, Tapered</td>
<td>412839</td>
</tr>
<tr>
<td>15</td>
<td>Damper, 5”, Oval</td>
<td>412821</td>
</tr>
<tr>
<td>16</td>
<td>Temperature Probe</td>
<td>402036</td>
</tr>
<tr>
<td>17</td>
<td>Door Assembly</td>
<td>404619</td>
</tr>
<tr>
<td>18</td>
<td>Kit, Wall Bracket</td>
<td>403970</td>
</tr>
<tr>
<td></td>
<td>Kit, Chain</td>
<td>404261</td>
</tr>
</tbody>
</table>
Fantech reserves the right to make technical changes. For updated documentation please refer to www.fantech.net.