Your ventilation system should be installed in conformance with the appropriate provincial requirements or, in the absence of such requirements, with the current edition of the National Building Code, and / or ASHRAE’s “Good Engineering Practices”.

United States
10048 Industrial Blvd., Lenexa, KS, 66215
Tel.: 800.747.1762

Canada
50 Kanalfakt. Way, Bouctouche, NB, E4S 3M5
Tel.: 800.565.3548

Fantech reserves the right to modify, at any time and without notice, any or all of its products’ features, designs, components and specifications to maintain their technological leadership position. Please visit our website fantech.net for more detailed technical information.
PLEASE READ AND SAVE THESE INSTRUCTIONS

Before installation careful consideration must be given to how this system will operate if connected to any other piece of mechanical equipment, i.e. a forced air furnace or air handler operating at a higher static pressure. After installation, the compatibility of the two pieces of equipment must be confirmed by measuring the airflow of the Heat Recovery Ventilator using the balancing procedure found in this manual. It is always important to assess how the operation of any HRV may interact with vented combustion equipment (i.e. Gas Furnaces, Oil Furnaces, Wood Stoves, etc.)

Products are designed and manufactured to provide reliable performance, but they are not guaranteed to be 100% free of defects. Even reliable products will experience occasional failures, and this possibility should be recognized by the user. If these products are used in a life support ventilation system where failure could result in loss or injury, the user should provide adequate back-up ventilation, supplementary natural ventilation or failure alarm system, or acknowledge willingness to accept the risk of such loss or injury.

Your ventilation system should be installed in accordance with the local building code that is in effect, in absence of such requirements, it is recommended to check with local authorities having jurisdiction in your area prior to installing this product.
TABLE OF CONTENTS

DETERMINING YOUR AIRFLOW REQUIREMENT ... 4

INSTALLATION EXAMPLES
- Fully dedicated system .. 5
- Partially dedicated system .. 6
- Simplified Installation .. 7

EXTERIOR DUCTING INSTALLATION
- Weatherhood Location ... 8
- Installing the ducting to the weatherhood ... 8

INTERIOR DUCTING INSTALLATION
- General Tips .. 9
- Installing duct to HRV ... 9
- Supply & Exhaust Air Grilles Location ... 9

HRV INSTALLATION .. 10

AIRFLOW ADJUSTMENT & BALANCING
- Start up procedure ... 11
- Airflow balancing ... 11

LOW VOLTAGE CONTROL SYSTEMS ... 13

WIRING DIAGRAM ... 14

TROUBLESHOOTING ... 17

HRV MAINTENANCE CHART .. 18

PARTS LIST ... 37
DETERMINING YOUR AIRFLOW REQUIREMENT

Room Count Method

<table>
<thead>
<tr>
<th>Room classification</th>
<th>Number of rooms</th>
<th>CFM (L/s)</th>
<th>CFM Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master bedroom</td>
<td>x 10 L/s (20 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td>yes or no</td>
<td>if yes add 10 L/s (20 CFM)</td>
<td>=</td>
</tr>
<tr>
<td>Bedrooms</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Living room</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Kitchen</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Laundry room</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Utility room</td>
<td>x 5 L/s (10 CFM)</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

1 CFM = 0.47 L/s
1 L/s = 2.13 CFM

Total Ventilation Requirements (add last column) =

ASHRAE method

<table>
<thead>
<tr>
<th>Floor area</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft²</td>
<td>CFM</td>
<td>L/s</td>
<td>CFM</td>
<td>L/s</td>
<td>CFM</td>
</tr>
<tr>
<td><500</td>
<td>30</td>
<td>128</td>
<td>38</td>
<td>18</td>
<td>45</td>
</tr>
<tr>
<td>501-1000</td>
<td>45</td>
<td>21</td>
<td>53</td>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>1001-1500</td>
<td>60</td>
<td>28</td>
<td>68</td>
<td>31</td>
<td>75</td>
</tr>
<tr>
<td>1501-2000</td>
<td>75</td>
<td>35</td>
<td>83</td>
<td>38</td>
<td>90</td>
</tr>
<tr>
<td>2001-2500</td>
<td>90</td>
<td>42</td>
<td>98</td>
<td>45</td>
<td>105</td>
</tr>
<tr>
<td>2501-3000</td>
<td>105</td>
<td>49</td>
<td>113</td>
<td>52</td>
<td>120</td>
</tr>
<tr>
<td>3001-3500</td>
<td>120</td>
<td>56</td>
<td>128</td>
<td>59</td>
<td>135</td>
</tr>
<tr>
<td>3501-4000</td>
<td>135</td>
<td>63</td>
<td>143</td>
<td>66</td>
<td>150</td>
</tr>
<tr>
<td>4001-4500</td>
<td>150</td>
<td>70</td>
<td>158</td>
<td>73</td>
<td>165</td>
</tr>
<tr>
<td>4501-5000</td>
<td>165</td>
<td>77</td>
<td>173</td>
<td>80</td>
<td>180</td>
</tr>
</tbody>
</table>

* ASHRAE 62.2-2016 Table 4.1, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.

Bathroom: If the HRV is going to provide the required local exhaust ventilation for each bathroom with each a continuous 20 CFM (10 L/s), this ventilation rate can be considered as part of the whole-building ventilation rate.
INSTALLATION EXAMPLES

Example only – duct configuration may differ depending on the model.

FULLY DEDICATED SYSTEM
BEST FOR NEW CONSTRUCTION

1. Stale air is drawn from key areas of the home requiring local exhaust (bathroom, kitchen, laundry room).
2. Fresh air is distributed directly to habitable rooms in the house (bedrooms, living room).
3. The HRV’s airflow must be balanced after installation using the procedure found in the section “AIRFLOW BALANCING.”

Suggested installation for:
• Hydronic baseboard
• Infloor heating
• Electric baseboard
• Mini split heat pump

Benefits: Provides the best fresh air distribution in the house; lowest operation cost since the furnace/air handler unit is not needed.

HRV ducting for fully Dedicated System

Ductwork layout may differ depending on model

Unit air flow should be balanced while ERV is on “Normal” speed and furnace blower is running.
INSTALLATION EXAMPLES (CONT'D)

DIRECT CONNECTION of the FRESH air to living area to the RETURN PLENUM of the AIR HANDLER (Stale air drawn from key areas of home)

PARTIALLY DEDICATED SYSTEM (BETTER)

1. In order to provide proper distribution of the fresh air, it is recommended that the furnace blower be set to run continuously or interconnected with HRV. See furnace electrical connection on page 15.
2. Stale air is drawn from key areas of the home (bathroom, kitchen, laundry room).
3. Fresh air is supplied to the return air plenum of the furnace.
4. Due to the difference in pressure between the HRV and the equipment it is being connected to the HRV’s airflow must be balanced on site, using the procedure found in the section “AIRFLOW BALANCING”

* In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock*

Benefits: Conditions the fresh air prior to distributing it throughout the house

Suggested installation for:
- Central furnace (air handling unit or central air conditioners)
- When ducting fresh air to living area is not possible or practical, i.e. expensive or when the central AHU will operate year-round.

HRV/Furnace ducting for Partially Dedicated System

* Ductwork layout may differ depending on model

Fantech heat recovery ventilators (HRV) that use a supply fan shutdown for frost prevention do not include an outdoor air motorized damper. If you are using a simplified installation, i.e. connecting the HRV supply air duct to a furnace’s return air duct, the HRV must operate continuously. When the HRV is turned off, no warm exhaust air will flow through the HRV but the furnace’s fan will continue to draw in outdoor air directly into the furnace. If it’s cold outside, cold air will be introduced, without re-heating, directly into the furnace. If the HRV is installed such that the homeowner may turn off the HRV during the winter, we recommend installing a motorized damper between the HRV’s supply air and the furnace’s return air duct that closes when the HRV is not operating. See wiring diagram (Figure 1). You may also choose to use a Fantech HRV that uses a recirculation defrost that incorporates an outdoor air damper.

Make sure the HRV is capable of meeting the required airflow rate.

Transformer and Damper motor not included
INSTALLATION EXAMPLES (CONT’D)

DIRECT CONNECTION of both the HRV SUPPLY AIR STREAM and EXHAUST AIR STREAM to the FURNACE COLD AIR RETURN

SIMPLIFIED INSTALLATION

(GOOD) *(RETURN/RETURN METHOD)*

1. Furnace blower must operate when ventilation from HRV is required. The furnace should be set to run continuously or interlocked with HRV. See furnace electrical connection on page 15.

2. A minimum separation of 1m (39") is recommended between the two direct connections.

3. In order to prevent exhausting any fresh air, the HRV’s exhaust air connection should be upstream of the HRV’s supply air connection when ducting to the furnace’s cold air return.

4. Due to the difference in pressure between the HRV and the equipment it is being connected to, the HRV’s airflow must be balanced on site, using the procedure found in the section “AIRFLOW BALANCING”

* In the case of a multi-zone system, please contact Fantech customer service prior to installing any installation type requiring the use of the furnace interlock*

ERV/Furnace ducting for Simplified Installation - Option 1

* Ductwork layout may differ depending on model

Suggested installation for:
- When bathroom and kitchen already have local exhaust system
- May be suitable for retrofitting

Benefits: Least expensive installation type

Fantech energy recovery ventilators (ERV) that use a supply fan shutdown for frost prevention do not include an outdoor air motorized damper. If you are using a simplified installation, i.e. connecting the ERV supply air duct to a furnace’s return air duct, the ERV must operate continuously. When the ERV is turned off, no warm exhaust air will flow through the ERV but the furnace’s fan will continue to draw in outdoor air directly into the furnace. If it’s cold outside, cold air will be introduced, without re-heating, directly into the furnace.

If the ERV is installed such that the homeowner may turn off the ERV during the winter, we recommend installing a motorized damper between the ERV’s supply air and the furnace’s return air duct that closes when the ERV is not operating. See wiring diagram (Figure 1). You may also choose to use a Fantech ERV that uses a recirculation defrost that incorporates an outdoor air damper.

Figure 1

Transformer and Damper motor not included
EXTERIOR DUCTING INSTALLATION

WEATHERHOOD LOCATION

- Decide where your intake and exhaust hoods will be located.

Locating the Intake Weatherhood

- Should be located upstream (if there are prevailing winds) from the exhaust outlet.
- At a minimum distance to 900 mm (3') away from dryer vents and furnace exhaust (medium or high efficiency furnaces), driveways, oil fill pipes, gas meters, or garbage containers.
- At a minimum height of 460mm (18'') above the ground, or above the level of expected snow accumulation.
- Ideally, keep weatherhoods 1m (3') from corners.
- Do not locate in the garage, attic, crawl space, or underneath deck.

Locating the Exhaust Weatherhood

- At least 460mm (18'') above ground or above the depth of expected snow accumulation
- Ideally, keep weatherhoods 1m (3') from corners.
- Not near a gas meter, electric meter or a walkway where fog or ice could create a hazard
- Do not locate in a garage, workshop or other unheated space

INSTALLING THE DUCTING TO THE WEATHERHOODS

A well designed and installed ducting system will allow the HRV to operate at its maximum efficiency. The inner liner of the flexible insulated duct must be secured to the sleeve of the weatherhood (as close to the outside as possible) and to the appropriate duct connection on the HRV. The insulation should remain full and not crushed. The outer liner, which acts as a vapor barrier, must be completely sealed to the outer wall and the HRV using tape and/or caulking. A good bead of high quality caulking (preferably acoustical sealant) will seal the inner flexible duct to both the HRV duct connection and the weatherhood prior to securing them.

To minimize airflow restriction, the flexible insulated duct that connects the two outside weatherhoods to the HRV should be stretched tightly and be as short as possible.

Twisting or folding the duct will severely restrict airflow.

See “Installation Diagram Examples” for installation examples.

STEPS FOR HOOD INSTALLATION:

1. Using the duct connection of the outside hood, outline the intake & exhaust holes to be cut. The holes should be slightly larger than the duct connection to allow for the thickness of the insulated flexible duct. Cut a hole for both the intake and exhaust hoods.

2. Pull the insulated flexible duct through the opening until it is well extended and straight. Slide the duct’s inner vinyl sleeve over the hood duct connection and secure. Pull the insulation over the duct and pull the vapor barrier over the sleeve. Secure with appropriate tape or sealant.

3. Push the hood into the opening and then attach the hood to the outside wall with mounting screws. Repeat the installation procedure for both the supply and exhaust hoods.

4. Using a caulking gun, seal around both hoods to prevent any leaks.
INTERIOR DUCTING INSTALLATION

- To maximize airflow through the ductwork system, all ducts should be kept short and have as few bends or elbows as possible.
- 45° elbows are preferable to 90°.
- Use "Y" ducts instead of "T" ducts whenever possible.
- All duct joints must be fastened with screws or duct sealant and wrapped with aluminum foil duct tape to prevent leakage.
- Galvanized ducting from the HRV to the living areas in the house is recommended whenever possible, although flexible ducting can be used in moderation when necessary.
- To avoid possible noise transfer through the ductwork system, a short length (approximately 300 mm, 12") of nonmetallic flexible insulated duct should be connected between the HRV and the supply/exhaust ductwork system.
- The main supply and return line to/from the HRV must have the same diameter as the duct connection or larger.
- Branch lines to the individual rooms may be as small as 100 mm (4").

Installing ducting to HRV

For flexible duct installation, slide flexible ducting onto duct connection. Then install a cable tie over flexible duct to prevent leakage between the ducting and the duct connection.

In the case of solid ducting, slide duct over duct connection, screw in place and seal.

Supply air grilles location

In homes without a forced air furnace, fresh air should be supplied to all habitable rooms, including bedrooms and living areas. It should be supplied from high wall or ceiling locations. Grilles that diffuse the air comfortably are recommended. In homes with a forced air furnace, you may want to connect the HRV to the furnace ductwork (see information below).

Exhaust air grilles location

The stale air exhaust system is used to draw air from the points in the house where the worst air quality problems occur. It is recommended that return air ducts be installed in the bathroom, kitchen, and laundry room. Additional return air ducts from strategic locations may be installed. The furnace return duct may also be used to exhaust from. In this method, the exhaust air is not ducted back from bathrooms, kitchens, etc to the HRV with “dedicated lines”.

As per building codes and installation requirements for combustion appliances:
Air return ducts, or openings for air return, should not be placed in enclosed spaces containing combustion appliances that are subject to spillage.
HRV INSTALLATION

LOCATION

The HRV must be located in a conditioned space where it will be possible to conveniently service the unit. Typically the HRV would be located in the mechanical room or an area close to the outside wall where the weatherhoods will be mounted. If a basement area is not convenient or does not exist, a utility room may be used.

Attic installation must meet the following conditions:

- Attic temperature must be above freezing conditions at all times and for best performance should be 12°C (54 °F).
- The condensate drain (if included) must be installed so that the condensate drains and is protected from freezing.
- The attic is easily accessible for equipment maintenance and inspection.

Connecting appliances to the HRV is not recommended. These include:

- Clothes dryer
- Range top
- Stovetop fan
- Central vacuum system
- Bathroom exhaust fans unless they are specifically designed for this purpose

These appliances may cause lint, dust or grease to collect in the HRV, damaging the unit.

Mounting- Chain mount

1. Place fastening hooks on the strapping board or the floor joists.
2. Attach a hanging chain (provided) to each 19 mm (3/4") bolt (provided) in the top 4 corners of the unit and tighten.
3. Hang the unit by slipping a link onto the hanging hooks, making sure the unit is level.
4. Install a spring on each chain. Hook the spring in the links so a loop is created in the chain. The spring will then support the unit’s weight and absorb vibrations.
INSTALLING DRAIN LINE

Through normal operation and during its defrost mode, the HRV may produce some condensation. This water should flow into a nearby drain, or be taken away by a condensate pump. The HRV and all condensate lines must be installed in a space where the temperature is maintained above the freezing point. A “P” trap should be made in the drain line. This will prevent odors from being drawn back up into the unit.

The drain nipple is placed upside down in the unit to prevent it being damaged during shipping or the installation of the unit.

1. Remove the nutsert.
2. Invert the drain nipple. Make sure to place gasket between the unit and the drain nipple inside the unit.
3. Secure the drain nipple using the nutsert.
4. Install the drain hose making a "P" trap, secure the condensate line drain connection using the tube clamp provided. Fill the condensate line with water.

Start up procedure

The Switch inside of the unit is used to toggle between STANDBY, REDUCED speed and NORMAL speed modes.

Place the unit in NORMAL speed to perform the balancing.

Airflow balancing

IF THE UNIT’S AIR FLOWS ARE NOT PROPERLY BALANCED...

- THE UNIT’S EFFICIENCY MAY BE REDUCED.
- THE UNIT’S CORE MAY BECOME DAMAGED.
- NORMAL OPERATION OF THE UNIT COULD CAUSE THE PRESSURIZATION OR DEPRESSURIZATION OF YOUR HOME, WHICH CAN LEAD TO AIR LEAKS OR BACKDRAFTING OF ANY COMBUSTION APPLIANCES.

The balancing procedure consists of measuring the supply air flow and the return air flow to ensure that they are equal. A difference of up to 10% is considered acceptable. In the cases where the air flow is not exactly the same, it is recommended to have a higher return air flow to ensure that the temperature of the supply air flow coming from outside is as close to room temperature as possible.

- For optimal performance, HRV unit should be re-balanced after a major renovation or after the installation of extra grilles or registers.
Airflow balancing (Cont’d)

Adjusting airflows

A damper is integrated into the Fresh Air to Building collar and on to the Stale Air to Outside. This damper replaces the installation of a separate damper into the Fresh Air to Building and on to the Stale Air to Outside ducting line.

The damper-collar is pre-set in the fully opened position. If the procedure requires a reduction in airflow to the fresh air duct, simply turn positioning knob located on the side of the collar clockwise until desired airflow is obtained. The damper position can be determined by the orientation of the pointers situated on the side of the damper. The damper is fully open when the pointers are towards the top of the collar (as shown in picture) and fully closed when they are sideways.

Once procedure is completed, install a piece of tape over positioning knob to avoid any tampering by the home owner.

WARNING! DO NOT TURN POSITIONING KNOB COUNTERCLOCKWISE WHEN DAMPERS ARE FULLY OPENED AS DAMAGE MAY OCCUR TO THE MECHANISM

Measuring the airflow using station (grid) method

1. Cut hole in duct and insert flow measuring station. Make sure that the flow measuring station’s air direction arrow points in the direction of the airflow. Secure the flow measuring station with duct tape.

2. Before taking the reading, make sure that the magnehelic gauge is level and at 0. Refer to the flow measuring station’s chart to determine your unit’s airflow velocity.

3. Adjust the “Supply Air Out” damper until you reach the desired velocity. Follow steps 1-3 to adjust the “Exhaust Air Out” damper, if needed.

- To avoid airflow turbulence and incorrect readings, the airflow velocity should be measured on a section of steel ducting. Reading should also be taken at a minimum distance of 457 mm (18”) from the unit or elbow. Measurement should also be made prior to any transition in the duct work so entire airflow is measured.
Low Voltage Control Systems

* Please see instruction manuals for individual controls for proper wiring and set up of control systems.

CENTRAL CONTROLS

These control options can only be used individually

<table>
<thead>
<tr>
<th>CONTROLS</th>
<th>FEATURES</th>
<th>CONNECT TO</th>
</tr>
</thead>
</table>
| ECO-Touch® | • Our most complete, yet easy to use control system
• Sleek design with backlight touchscreen LCD
• ECO mode selects the best operating mode and speed for the season, minimizing energy use associated with ventilation
• Set preferred indoor relative humidity range and ventilation mode for day and night conditions
• No battery to replace, all programmed settings are retained during power outage
• Maintenance reminder indicator
• Error code messages reduce troubleshooting time | W–W |
| EDF7 | • MODE button provides 3 modes of operations: Ventilation, Recirculation and Standby
• User selected fan speed: Reduced, Medium, Normal and 20 minutes per hour
• AUTO setting allows the homeowner to deactivate the dehumidistat
• When the humidity exceeds the desired setpoint, the ventilation system operates at Normal speed.
• Once the desired humidity level is achieved, your ventilation system resumes to its previous mode of operation | W–W |
| EDF1 | • Press button once for continuous Reduced speed
• Press button twice and the unit will cycle 20 minutes ON/40 minutes OFF and repeat
• Press button a third time and the system will run continuously on HIGH speed | W–W |

AUXILIARY CONTROL – These controls can be paired

| RTS2* | • 20- minute timer with LED light
• Boosts system to high speed with the touch of a button
• Up to 5 can be used in one system
• Use in bathroom, kitchen, laundry room | +T- |
| RTS5 | • 20/40/60 minute timer with LED light
• Boosts system to high speed with the touch of a button
• Up to 5 can be used in one system
• Use in bathroom, kitchen, laundry room | +T- |
| MDEH1 | • Rotary dial Dehumidistat
• Multiple units can be used
• We recommend setting the relative humidity above 80% during the summer | D–D |

1. Ensure that unit is not plugged when connecting the control.
2. Recirculation mode is only available with the “R” suffix at the end of the model number.

* Maintain polarity between control and HRV: (+ → +; - → -)

The wiring connectors can be removed for easier connection.
Observe polarity on all accessory controls where applicable.

LEGEND:
- Low voltage factory wiring
- Line voltage factory wiring

NOTES:
1. Use specified CSA/UL certified glass fuse: MUST be 3A with T>20.

JUMPER SETTINGS
- OFF OFF OFF OFF OFF ON OFF
- J7 J6 J5 J4 J3 J2 J1

* Wiring diagram of complete unit inside of access panel
WIRING DIAGRAM TO FURNACE

FOR A FURNACE CONNECTION TO A COOLING SYSTEM:

On some newer furnaces and older thermostats, energizing the R and G terminal at the furnace has the effect of energizing the Y at the thermostat and thereby turning on the cooling system. If you identify this type of thermostat, you must use the "Alternate Furnace Interlock Wiring".

As per building codes and installation requirements for combustion appliances:
Air return ducts, or openings for air return, should not be placed in enclosed spaces containing combustion appliances that are subject to spillage.
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Causes</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air is too dry</td>
<td>Dehumidistat control is set too low</td>
<td>Increase the desired level of humidity. Change ventilation mode from continuous mode to standby.</td>
</tr>
<tr>
<td>Air is too humid</td>
<td>Dehumidistat control is set too high</td>
<td>Reduce the desired level of humidity. Combine this with the use of continuous exchange mode.</td>
</tr>
<tr>
<td></td>
<td>Sudden change in temperature</td>
<td>Wait until outside temperature stabilizes (winter). Heating will also improve situation.</td>
</tr>
<tr>
<td></td>
<td>Storing too much wood for heating</td>
<td>Store a majority of your wood outside. Even dried, a cord of wood contains more than 20 gallons of water.</td>
</tr>
<tr>
<td></td>
<td>Dryer vent exhaust is inside home</td>
<td>Make sure the dryer vent is exhausting outside.</td>
</tr>
<tr>
<td></td>
<td>Poor air circulation near windows</td>
<td>Open curtains or blinds.</td>
</tr>
<tr>
<td></td>
<td>HRV out of balance</td>
<td>Have contractor balance HRV airflows</td>
</tr>
<tr>
<td></td>
<td>Well sealed basement door is closed</td>
<td>Open the door or install a grill on the door.</td>
</tr>
<tr>
<td></td>
<td>Failed damper system may be stuck in recirculation mode</td>
<td>Check defrost damper. If damper is always blocking incoming fresh air; have contractor verify damper system.</td>
</tr>
<tr>
<td>Persistent condensation on window</td>
<td>Improper adjustment of dehumidistat control</td>
<td>Reduce the desired level of humidity. Combine this step with use of continuous exchange mode.</td>
</tr>
<tr>
<td>Poor Air Flows</td>
<td>1/4” (6mm) mesh on the outside hoods is plugged</td>
<td>Clean exterior hoods or vents</td>
</tr>
<tr>
<td></td>
<td>Filters plugged</td>
<td>Remove and clean filter</td>
</tr>
<tr>
<td></td>
<td>Core obstructed</td>
<td>Remove and clean core</td>
</tr>
<tr>
<td></td>
<td>Indoor grilles closed or blocked</td>
<td>Check and open grilles</td>
</tr>
<tr>
<td></td>
<td>Inadequate power supply at site</td>
<td>Have electrician check supply voltage</td>
</tr>
<tr>
<td></td>
<td>Ductwork is restricting airflow</td>
<td>Check duct installation</td>
</tr>
<tr>
<td></td>
<td>Improper speed control setting</td>
<td>Increase the speed of the HRV (i.e. change unit control from REDUCED to NORMAL speed)</td>
</tr>
<tr>
<td></td>
<td>HRV airflow improperly balanced</td>
<td>Have contractor balance HRV airflows</td>
</tr>
<tr>
<td></td>
<td>Ducting has fallen down or been disconnected from HRV</td>
<td>Have contractor reconnect ducting</td>
</tr>
<tr>
<td>Supply air feels cold</td>
<td>Poor location of supply grilles, the airflow may irritate the occupant</td>
<td>Locate the grilles high on the walls or under the baseboards, install ceiling mounted diffuser or grilles so as not to directly spoil the supply air on the occupant (eg. Over a sofa) Turn down the HRV supply speed. A small duct heater (1kw) could be used to temper the supply air Placement of furniture or closed doors is restricting the movement of air in the home Outdoor temperature extremely cold</td>
</tr>
<tr>
<td>HRV and/or Ducts frosting up</td>
<td>HRV airflows are improperly balanced</td>
<td>Have HVAC contractor balance the HRV airflows</td>
</tr>
<tr>
<td></td>
<td>Malfunction of the HRV defrost system</td>
<td>Note: minimal frost build-up is expected on the core before unit initiates defrost cycle functions</td>
</tr>
<tr>
<td>Condensation or Ice Build Up in Insulated Duct to the Outside</td>
<td>Incomplete vapor barrier around insulated duct</td>
<td>Tape and seal all joints</td>
</tr>
<tr>
<td></td>
<td>A hole or tear in outer duct covering</td>
<td>Tape any holes or tears made in the outer duct covering Ensure that the vapor barrier is completely sealed.</td>
</tr>
<tr>
<td>LED is flashing</td>
<td>Everything is in good operations</td>
<td></td>
</tr>
<tr>
<td>LED is not flashing</td>
<td>No Power is being transmitted to the Control Board</td>
<td>Make sure unit is plugged. Transformer may need replacing.</td>
</tr>
</tbody>
</table>

Note: It is best to get the unit checked by a certified HVAC Contractor/Technician.
Limited Warranty

- The Heat recovery aluminum core has a Limited Lifetime Warranty.
- The warranty is limited to 5 years on parts and 7 years on fans from the date of purchase, including parts replaced during this time period. If there is no proof of purchase available, the date associated with the serial number will be used for the beginning of the warranty period.
- The fans found in all Fantech HRVs require no lubrication, and are factory balanced to prevent vibration and promote silent operation.
- The limited warranty covers normal use. It does not apply to any defects, malfunctions or failures as a result of improper installation, abuse, mishandling, misapplication, fortuitous occurrence or any other circumstances outside Fantech’s control.
- Inappropriate installation or maintenance may result in the cancellation of the warranty.
- Any unauthorized work will result in the cancellation of the warranty.
- Fantech is not responsible for any incidental or consequential damages incurred in the use of the ventilation system.
- Fantech is not responsible for providing an authorized service centre near the purchaser or in the general area.
- Fantech reserves the right to supply refurbished parts as replacements.
- Transportation, removal and installation fees are the responsibility of the purchaser.
- The purchaser is responsible to adhering to all codes in effect in his area.

* This warranty is the exclusive and only warranty in effect relative to the ventilation system and all other warranties either expressed or implied are invalid.

HRV MAINTENANCE CHART

<table>
<thead>
<tr>
<th>Maintenance Required</th>
<th>Recommended Frequency</th>
<th>Date Maintenance Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check and Clean Filters</td>
<td>Every 3 months or if dirty</td>
<td></td>
</tr>
<tr>
<td>Check Heat Recovery Core</td>
<td>Every 6 months</td>
<td></td>
</tr>
<tr>
<td>Check Drain Pan and Lines</td>
<td>Every 3 months</td>
<td></td>
</tr>
<tr>
<td>Vacuum the Inside of the Unit</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Clean and Un-block Outside Hoods</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Clean and Inspect Duct Work</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>General Servicing by a Qualified Contractor</td>
<td>Annually</td>
<td></td>
</tr>
</tbody>
</table>

- Schedule may be altered to meet your own needs. More frequent servicing may be required depending on the seventy of your home’s indoor and outdoor environments.

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Telephone Number</th>
<th>Date Serviced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This warranty is the exclusive and only warranty in effect relative to the ventilation system and all other warranties either expressed or implied are invalid.
NOTE
Votre système de ventilation doit être installé conformément aux exigences de la province où vous habitez ou, à défaut de telles exigences, conformément à l’édition actuelle du Code national du bâtiment du Canada ou aux « méthodes d’ingénierie appropriées » de l’ASHRAE.

PIÈCES DANS LA BOÎTE
Ventilateur récupérateur de chaleur, 1 pc
Kit de suspension, 1 pc
Tuyau d’évacuation, 1 pc
Manuel d’installation, 1 pc

États Unis
10048 Industrial Blvd., Lenexa, KS, 66215
Tél.: 800.747.1762

Canada
50 Kanalfakt Way, Bouctouche, NB, E4S 3M5
Tél.: 800.565.3548

Fantech se réserve le droit de modifier partiellement ou entièrement, en tout moment et sans préavis, les caractéristiques, la conception, les composants et les spécifications de ses produits, afin de conserver sa position de leader de technologie.
S’il vous plaît visitez notre site web fantech.net pour des informations techniques plus détaillées.
VEUILLEZ LIRE ET CONSERVER CES INSTRUCTIONS

Avant de procéder à l’installation, examinez avec soin la façon dont le système fonctionnera s’il est relié à tout autre appareil mécanique, notamment une fournaise à air pulsé ou un appareil de traitement d’air dont la pression statique est plus élevée. Une fois l’installation terminée, la compatibilité des deux appareils doit être confirmée en mesurant le débit d’air du ventilateur récupérateur de chaleur (VRC) au moyen de la procédure d’équilibrage du présent manuel. Il importe de toujours évaluer l’interaction du VRC avec les appareils de chauffage à évacuation (fournaise à gaz, fournaise à mazout, poêle à bois, etc.)

Les produits sont conçus et fabriqués pour fournir une performance fiable, mais ils ne sont pas garantis à 100% sans défaut. Même les produits ont des pannes occasionnelles et cette possibilité devrait être reconnue par l’utilisateur. Si ces produits sont utilisés dans un système de ventilation qui maintient des fonctions vitales où une défaillance pourrait entraîner des pertes ou des blessures, l’utilisateur doit fournir une ventilation de secours adéquate, une ventilation supplémentaire naturelle, un système d’alarme de défaillance ou d’accepter les risques de pertes ou de blessures.

Votre système de ventilation doit être installé en conformité avec le code du bâtiment local qui est en vigueur, en l’absence de telles exigences, il est recommandé de vérifier auprès des autorités locales ayant juridiction dans votre région avant d’installer ce produit.
TABLE DES MATIÈRES

DÉTERMINER VOS BESOINS DE VENTILATION ... 22

EXEMPLES D'INSTALLATION
- Système entièrement spécialisé ... 23
- Système partiellement spécialisé ... 24
- Installation simplifiée ... 25

INSTALLATION DES CONDUITS EXTÉRIEURS
- Emplacement des hottes ... 26
- Installation de l’ensemble des conduits avec hottes 26

INSTALLATION DES CONDUITS INTÉRIEURS
- Conseils pratiques .. 27
- Installation des conduits sur le VRC ... 27
- Emplacement des grilles d’approvisionnement et d’évacuation 27

INSTALLATION DU VRC ... 28

ÉQUILIBRAGE DU DÉBIT D’AIR
- Procédure démarrage ... 29
- Équilibrage du débit d’air ... 29

SYSTÈMES DE CONTRÔLE À BASSE TENSION ... 31

SCHÉMAS ÉLECTRIQUES ... 32

DÉPANNAGE ... 35

TABLEAU D’ENTRETIEN DU VRC ... 36

LISTE DES COMPOSANTES ... 37
DÉTERMINER VOS BESOINS DE VENTILATION

Méthode compte de pièces

<table>
<thead>
<tr>
<th>Liste des pièces</th>
<th>Nombre de pièces</th>
<th>Pi³/min (L/s)</th>
<th>PCM Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambre principale</td>
<td></td>
<td>x 10 L/s (20 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Sous-sol</td>
<td>oui ou non</td>
<td>Si oui, ajoutez 10 L/s (20 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Chambre à coucher</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Salon</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Autres</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Cuisine</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Salle de bain</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Buanderies</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
<tr>
<td>Lingerie</td>
<td></td>
<td>x 5 L/s (10 pi³/min)</td>
<td>=</td>
</tr>
</tbody>
</table>

Ventilation total nécessaire (La somme des chiffres de la dernière colonne) =

1 pi³/min = 0.47 L/s
1 L/s = 2.13 pi³/min

Méthode ASHRAE

Détail d'air recommandé

<table>
<thead>
<tr>
<th>Superficie</th>
<th>ft²</th>
<th>m²</th>
<th>Pi³/min</th>
<th>L/s</th>
<th>Pi³/min</th>
<th>L/s</th>
<th>Pi³/min</th>
<th>L/s</th>
<th>Pi³/min</th>
<th>L/s</th>
<th>Pi³/min</th>
<th>L/s</th>
</tr>
</thead>
<tbody>
<tr>
<td><500</td>
<td>30</td>
<td>128</td>
<td>38</td>
<td>18</td>
<td>45</td>
<td>21</td>
<td>53</td>
<td>25</td>
<td>60</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>501-1000</td>
<td>45</td>
<td>21</td>
<td>53</td>
<td>24</td>
<td>60</td>
<td>28</td>
<td>68</td>
<td>31</td>
<td>75</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001-1500</td>
<td>60</td>
<td>28</td>
<td>68</td>
<td>31</td>
<td>75</td>
<td>35</td>
<td>83</td>
<td>38</td>
<td>90</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1501-2000</td>
<td>75</td>
<td>35</td>
<td>83</td>
<td>38</td>
<td>90</td>
<td>42</td>
<td>98</td>
<td>45</td>
<td>105</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-2500</td>
<td>90</td>
<td>42</td>
<td>98</td>
<td>45</td>
<td>105</td>
<td>49</td>
<td>113</td>
<td>52</td>
<td>120</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2501-3000</td>
<td>105</td>
<td>49</td>
<td>113</td>
<td>52</td>
<td>120</td>
<td>56</td>
<td>128</td>
<td>59</td>
<td>135</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001-3500</td>
<td>120</td>
<td>56</td>
<td>128</td>
<td>59</td>
<td>135</td>
<td>63</td>
<td>143</td>
<td>66</td>
<td>150</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3501-4000</td>
<td>135</td>
<td>63</td>
<td>143</td>
<td>66</td>
<td>150</td>
<td>70</td>
<td>158</td>
<td>73</td>
<td>165</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001-4500</td>
<td>150</td>
<td>70</td>
<td>158</td>
<td>73</td>
<td>165</td>
<td>77</td>
<td>173</td>
<td>80</td>
<td>180</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4501-5000</td>
<td>165</td>
<td>77</td>
<td>173</td>
<td>80</td>
<td>180</td>
<td>84</td>
<td>188</td>
<td>87</td>
<td>195</td>
<td>91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ASHRAE 62.2-2016 Table 4.1, Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.

Salle de bain: Si le VRC fournit la ventilation d’échappement locale requise pour chaque salle de bain avec chacun un 20 PCM continu (10L/s), ce taux de ventilation peut être considéré comme faisant partie du débit de ventilation de tout le bâtiment.
EXEMPLES D'INSTALLATION

Exemple seulement – la configuration des conduits peut être différente selon le modèle.

SYSTÈME ENTIEREMENT SPÉCIALISÉ

(NOUVELLE CONSTRUCTION)

1. L'air vicié est aspiré à partir des endroits clés de la maison (salle de bains, cuisine, buanderie).
2. L'air frais est distribué parmi les pièces habitables (chambres à coucher, salon).
3. Le débit d'air du VRC doit être confirmé sur place au moyen de la procédure d'équilibrage du présent manuel d'installation.

Installation suggérée pour:
- Plinthe à eau chaude
- Plancher chauffant
- Plinthe électriques
- Thermopompe mural bibloc

Avantages: Fourni la meilleure répartition de l'air frais dans la maison; les coûts de fonctionnement plus faibles, puisque l'unité de traitement d'air/ fournaise n'est pas nécessaire

* Les raccords de conduit peuvent être différents selon le modèle.

*Air vicié provenant de l'intérieur

*Extérieur

Air frais provenant de l'extérieur

Air vicié provenant de l'intérieur

Air vicié évacué à l'extérieur

Air frais distribué à l'intérieur

*L'appareil est équilibré à vitesse normale et pendant que le ventilateur de la fournaise est en marche.
SYSTÈME PARTIELLEMENT SPÉCIALISÉ

1. Pour assurer une bonne distribution de l’air, il est nécessaire de faire fonctionner le ventilateur de la fournaise pendant que le VRC est en marche. Voir connexion électrique de la fournaise à la page 33.

2. Air vicié est aspiré à des endroits clés de la maison (salle de bain, cuisine, buanderie).

3. L’air frais est fourni au plénum de retour d’air de la fournaise.

4. En raison de l’écart de pression entre le VRC et l’équipement auquel il est raccordé, le débit d’air du VRC doit être équilibré sur place au moyen de la procédure dans la section “équilibrage du débit d’air”.

° Dans le cas d’un système multi-zone, s’il vous plaît contacter le service à la clientèle de Fantech avant d’installer tout type d’installation nécessitant l’utilisation synchronisé de la fournaise °

Conduits VRC/Fournaise pour Système partiellement spécialisé

° Les raccords de conduit peuvent être différents selon le modèle

Les ventilateurs récupérateurs de chaleur (VRC) de Fantech qui utilisent un arrêt du ventilateur d’alimentation pour la prévention de gel ne comprennent pas un volet motorisé pour l’air extérieur. Si vous utilisez une installation simplifiée, c’est à dire relier de conduit d’alimentation d’air du VRC à l’aire du conduit de retour d’une fournaise, le VRC doit fonctionner en continu. Lorsque le VRC est éteint, pas d’air d’évacuation chaud circule à travers le VRC mais le ventilateur de fournaise continuera à aspirer l’air extérieur directement dans la fournaise. S’il fait froid dehors, l’air froid sera introduit, sans réchauffage, directement dans la fournaise.

Si le VRC est installé de telle sorte que le propriétaire peut désactiver le VRC au cours de l’hiver, nous vous recommandons d’installer un volet motorisé entre l’apport d’air du VRC et le retour d’air du conduit de la fournaise qui se ferme lorsque le VRC ne fonctionne pas. Voir le schéma de câblage (figure 1). Vous pouvez aussi choisir d’utiliser une VRC Fantech qui utilise un dégivrage de recirculation qui intègre un volet d’air extérieur.

Installation suggérée pour:

- Fournaise centrale (unité de traitement d’air, climatisé central)
- Lorsque l’installation des endroits habitable n’est pas possible ou pratique, dispendieux ou lorsque l’unité de traitement d’air fonctionnera toute l’année.

Avantages: Conditionne l’air frais avant de le distribuer dans la maison

S’assurer que le VRC est dans la possibilité de rencontrer le débit d’air recommandé

° Le transformateur et le moteur du volet ne sont pas inclus.
EXEMPLES D'INSTALLATION (SUITE)

RACCORDEMENT DIRECT du FLUX D'AIR D'APPROVISIONNEMENT et du FLUX D'AIR ÉVACUÉ DU VRC à la BOUCHE D'AIR DE LA FOURNAISE

INSTALLATION SIMPLIFIÉE

(BONNE)
(MÉTHODE RETOUR / RETOUR)

1. Pour assurer une bonne distribution de l'air, le ventilateur de la fournaise doit fonctionner continuellement, ou bien le fonctionnement du VRC doit être synchronisé avec le ventilateur de la fournaise. Voir connexion électrique de la fournaise à la page 33.

2. Une séparation minimum de 1m (36 po) est recommandée entre les deux connexions directes.

3. Afin d'éviter l'évacuation d'air frais, la connexion d'évacuation du VRC devrait être située en amont de la connexion d'approvisionnement du VRC lorsqu'on les branche à la bouche de reprise d'air de la fournaise.

4. En raison de l'écart de pression entre le VRC et l'équipement auquel il est raccordé, le débit d'air du VRC doit être équilibré sur place au moyen de la procédure détaillée dans la section "Équilibrage du débit d'air".

* Dans le cas d’un système multi-zone, s’il vous plaît contacter le service à la clientèle de Fantech avant d’installer tout type d’installation nécessitant l’utilisation synchronisé de la fournaise *

Conduits VRC/Fournaise pour Installation simplifiée - Option 1

* Les raccords de conduit peuvent être différents selon le modèle.

** Les ventilateurs récupérateurs de chaleur (VRC) de Fantech qui utilisent un arrêt du ventilateur d'alimentation pour la prévention de gel ne comprennent pas un volet motorisé pour l'air extérieur. Si vous utilisez une installation simplifiée, c'est à dire rélier de conduit d'alimentation d'air du VRC à l'aide du conduit de retour d'une fournaise, le VRC doit fonctionner en continu. Lorsque le VRC est éteint, pas d'air d'évacuation chaud circule à travers le VRC mais le ventilateur de fournaise continuera à aspirer l'air extérieur directement dans la fournaise. S'il fait froid dehors, l'air froid sera introduit, sans réchauffage, directement dans la fournaise.

Si le VRC est installé de telle sorte que le propriétaire peut désactiver le VRC au cours de l’hiver, nous vous recommandons d’installer un volet motorisé entre l’apport d’air du VRC et le retour d’air du conduit de la fournaise qui se ferme lorsque le VRC ne fonctionne pas. Voir le schéma de câblage (figure 1). Vous pouvez aussi choisir d'utiliser une VRC Fantech qui utilise un dégivrage de recirculation qui intègre un volet d'air extérieur.

Installation suggérée pour:
- Lorsque la salle de bain et la cuisine ont déjà un système d'échappement
- Peut convenir pour la modernisation

Avantages: Type d'installation le moins dispendieux à mettre en place

Figure 1

* Le transformateur et le moteur du volet ne sont pas inclus.
INSTALLATION DES CONDUITS EXTÉRIEURS

EMPLACEMENT DES HOTTES

• Décidez de l’emplacement des hottes d’aspiration et d’évacuation.

Emplacement de la hotte d’aspiration

• Doit être située en amont de la sortie d’évacuation (en présence de vents dominants).
• Doit être située à une distance minimum de 900 mm (3 pi) de la hotte d’évacuation, des événets de la sécheuse et de l’évacuation de la fournaise à air pulsé (fournaise à moyen ou à haut rendement).
• Doit être montée à au moins 460 mm (18 po) au-dessus du sol ou au-dessus de la couche de neige prévue.
• Idéalement, gardez les hottes à 1m (3 pi) des coins.
• Ne doit jamais être située dans un garage, un grenier, vide sanitaire ou sous un patio.

Emplacement de la hotte d’évacuation

• Doit être située à au moins 2m (6 pi) de la prise d’air de ventilation.
• Doit être montée à au moins 460 mm (18 po) au-dessus du sol ou au-dessus de la couche de neige prévue.
• Idéalement, gardez les hottes à 1m (3 pi) des coins.
• Ne doit pas être située à proximité d’un compteur de gaz, d’un compteur d’électricité ou d’une allée où le brouillard et la glace peuvent constituer un danger.
• Ne doit jamais être située dans un garage, un atelier ou un espace non chauffé.

INSTALLATION DE L’ENSEMBLE DE CONDUITS AVEC LES HOTTES

Le rendement maximum du VRC est assuré par un ensemble de conduits d’évacuation de haute qualité technique qui est bien installé. Le revêtement intérieur des conduits flexibles isolés doit être encastré dans un manchon des hottes de protection contre les intempéries (aussi près que possible de l’extérieur) et dans l’orifice approprié du VRC. Assurez-vous que l’isolation demeure entièrement et qu’elle n’est pas écrasée. Le revêtement extérieur, qui joue le rôle de parevapeur, doit être complètement scellé sur le mur extérieur et le VRC à l’aide de ruban ou de produit de calfeutrage. Déposez un cordon de produit de calfeutrage de première qualité (du mastic d’isolation acoustique de préférence) pour sceller le conduit flexible intérieur à l’orifice du VRC et à la hotte de protection avant de procéder à l’encastrément. Pour réduire au minimum la restriction de débit d’air, le conduit flexible isolé qui relie les deux hottes de protection extérieures du VRC doit être bien tendu et le plus court possible. Des conduits tordus ou pliés réduisent fortement le débit d’air.

Reportez-vous aux exemples illustrés dans la section "Exemples d’installation"

ÉTAPES DE L’INSTALLATION DE LA HOTTE:

1 Tracez le contour du collet de la hotte externe pour découper les trous d’aspiration et d’évacuation. Le diamètre des trous doit être un peu plus grand que celui du collet, pour tenir compte de l’épaisseur du conduit flexible isolé. Percez un trou pour la hotte d’aspiration et un trou pour la hotte d’échappement.

2 Faites passer le conduit flexible isolé dans l’ouverture jusqu’à ce qu’il soit bien tendu et droit. Faites glisser le manchon en vinyle interne du conduit sur le collet avec l’isolation et placez le parevapeur sur le manchon. Fixez à l’aide de ruban adhésif en toile.

3 Enfoncez la hotte dans l’ouverture. Fixez la hotte sur le mur extérieur en utilisant des vis de montage. Répétez la procédure d’installation pour la hotte d’aspiration et la hotte d’évacuation.

4 À l’aide d’un pistolet à calfeutrer, calfeutrez les deux hottes pour empêcher les fuites.
Installation des conduits intérieurs

• Pour maximiser le débit d'air dans le réseau de conduits, assurez-vous que tous les conduits sont le plus court et le plus droit possible.
• Il est préférable d’utiliser des coudes de 45 degrés plutôt que des coudes de 90 degrés.
• Dans la mesure du possible, utilisez des raccords en Y plutôt que des raccords en T.
• Pour éviter les fuites, fixez tous les joints des conduits en utilisant des vis ou un produit d’étanchéité pour conduits puis recouvrez-les d’un ruban adhésif en toile de qualité.
• Dans la mesure du possible, utilisez un ensemble de conduits galvanisés entre le VRC et les pièces d’habitation de la maison; il est également possible d’utiliser des conduits flexibles en modération.
• Pour éviter que le bruit ne se propage dans le réseau de conduits, reliez le VRC au réseau de conduits d’aspiration/d’évacuation par un court conduit flexible isolé non métallique (environ 300 mm [12 po]).
• Les conduits principales d’alimentation et de retour de VRC doivent avoir le même diamètre ou plus grand que les connexion.
• Les branchements qui aboutissent dans chaque pièce peuvent mesurer aussi peu que 100 mm (4 po).

Installation des conduits sur le VRC
Le collet est muni de crochets afin d’éviter le glissement du conduit flexible. Pour installer le conduit flexible, faites le glisser sur le collet et au-dessus des crochets. Ensuite, installez un attache câble par-dessus le conduit flexible afin de prévenir des fuites entre le conduit et le collet.

Dans le cas d’un conduit galvanisé, faites le glisser sur le collet, vissez en place et scellez le.

Emplacement des grilles d’approvisionnement
Dans les maisons non munies d’une fournaise à air pulsé, il faut distribuer de l’air frais dans toutes les pièces d’habitation, y compris les chambres à coucher. L’air devrait provenir de la partie supérieure d’un mur ou du plafond. Il est recommandé d’utiliser des grilles qui distribuent l’air confortablement.
Dans les maisons pourvues d’une fournaise à air pulsé, il est possible de relier le VRC au réseau de conduits de la fournaise.

Emplacement des grilles d’évacuation
Le système d’évacuation de l’air vicié sert à aspirer l’air des endroits de la maison où la qualité d’air est la moins bonne. Il est recommandé d’installer les conduits de retour d’air dans la salle de bains, la cuisine et la buanderie. Il est également possible d’installer des conduits supplémentaires de retour d’air dans des endroits stratégiques. Le conduit de retour de la fournaise peut également servir de conduit d’évacuation. Ainsi, l’air évacué des salles de bain, cuisine, etc. ne retourne pas au VRC par des «conduits spécialisées».

Selon les codes du bâtiment et les codes d’installation des appareils de combustion, il est interdit de poser des grilles de reprise d’air ou de percer une ouverture pour une prise d’air dans une pièce close où se trouvent des appareils à combustion sujets à des déversements.
INSTALLATION

EMPLACEMENT

Le VRC doit être situé dans un endroit chauffé où il sera possible d’en effectuer l’entretien convenablement. Généralement, le VRC doit être situé dans la chambre des appareils mécaniques ou à proximité. S’il n’y a pas de sous-sol ou si le sous-sol ne convient pas, il est possible d’installer l’appareil dans la lingerie ou dans la buanderie.

Installation dans un grenier doit remplir les conditions suivantes:

- La température du grenier doit être soit au-dessus des conditions de gel en tout temps et pour une meilleur performance devrait être 12°C (54 °F).
- L’évacuation des condensats (si inclus) doit être installé de telle sorte que les drains de condensat et est protégé contre le gel.
- Le grenier est facilement accessible pour l’entretien du matériel et de l’inspection.

Il n’est pas recommander de raccorder des appareils électroménagers au VRC, notamment:

- Sécheuse de linge;
- Table de cuisson;
- Ventilateur de cuisinière;
- Système d’aspirateur central.

Ces électroménagers peuvent entraîner l’accumulation de charpie, de poussière ou de graisse dans le VRC et l’endommager.

Le raccordement de n’importe quel type d’appareils électroménagers au VRC annule la garantie.

MONTAGE- CHAINES

1. Installez les crochets de fixation sur la fourrure ou les solives de plancher.
2. Suspendez la chaîne (fournie) à chaque boulon de 19 mm (3/4 po) (fournis) situés aux quatre coins supérieurs du VRC et serrez.
3. Suspendez le VRC en faisant glisser un maillon de la chaîne dans les crochets de suspension et assurez vous que l’appareil est de niveau.
4. Installez un ressort sur chaque chaîne. Accrochez le ressort de sorte qu’une boucle est créée dans la chaîne. Le ressort supportera le poids du VRC et absorbera les vibrations.
Procédure de démarrage

Le commutateur à l’intérieur de l’appareil est utilisé pour basculer entre STANDBY, vitesse RÉDUITE et les modes de vitesse normale. Placez l’appareil à vitesse normale pour effectuer l’équilibrage.

Équilibrage du débit d'air

Si les flux d'air de l'appareil ne sont pas correctement équilibrés...

- L’EFFICACITÉ DE L’APPAREIL PEUT ÊTRE RÉDUITE.
- DES DOMMAGE AU NOYAU DE RÉTABLISSEMENT DE CHALEUR PEUVENT SURVENIR.
- L’UTILISATION DE L’APPAREIL POURRAIT CRÉER UNE PRESSION NÉGATIVE OU POSITIVE DANS VOTRE MAISON FAISANT ENTREIR L’AIR FROID OU CAUSANT UN REFOULEMENT DE L’AIR DANS VOS APPAREILS DE CHAUFFAGE À ÉVACUATION.
- IL ES POSSIBLE QUE LE DÉGIVRAGE DE L’APPAREIL NE SE PRODUIT PAS CORRECTEMENT.

Le procédé d’équilibrage consiste à mesurer l’air d’échappement partant du système et l’air d’approvisionnement entrant dans le système et s’assurer que ces deux sont égaux. Une différence de 10% ou moins est acceptable. Dans ces les cas où il y a une déviation, on recommande d’avoir une plus grande quantité d’air d’échappement que d’air d’approvisionnement pour s’assurer que la température de l’air introduit dans la maison est la plus près possible de celle qui est déjà présente.

Afin d’assurer une performance optimale, le VRC devrait être rééquilibré après toute rénovation majeure ou après l’ajout de nouveau conduits.
Équilibrage du débit d'air (suite)

Ajustement des débits d'air

Un registre est intégré dans le collet d'air frais distribué à l'intérieur et dans le collet d'air vicé vers l'extérieur. Ce registre remplace l'installation d'un registre dans les conduits de distribution d'air frais à l'intérieur et dans le collet d'air vicé vers l'extérieur. Par défaut, le registre du collet est complètement ouvert. Si la procédure nécessite une réduction du débit d'air dans le conduit d'air frais, simplement tournez, dans le sens horaire, la molette de positionnement située sur le côté du collet, jusqu'à atteindre le débit d'air voulu. La position du registre peut être déterminée par l'orientation des pointeurs situés sur le côté du registre. Le registre est complètement ouvert lorsque les pointeurs sont orientés vers le haut du collet (voir photo ci-contre) et complètement fermé lorsqu'ils sont orientés à l'horizontal.

Une fois la procédure complétée, placez un ruban adhésif sur la molette de positionnement afin d'éviter que quelqu'un la manipule.

NE PAS TOURNER LA MOLETTE DE POSITIONNEMENT DANS LE SENS ANTI-HORAIRE LORSQUE LES REGISTRES SONT COMPLÈTEMENT OUVERTS, PUISQUE CELA PEUT ENDOMMAGER LE MÉCANISME

Mesure du flot d'air en utilisant la méthode du poste de mesure des débits

1 Percez un trou dans le conduit et insérez le poste de mesure des débits. Assurez-vous que la flèche de sens de l'air du poste de mesure des débits pointe dans le sens du débit d'air. Fixez le poste de mesure des débits avec du ruban adhésif.

2 Avant de prendre la lecture, assurez-vous que le manomètre Magnehelic est de niveau et indique 0. Consultez le tableau du poste de mesure pour déterminer le débit d'air de l'appareil.

3 Réglez le registre « Supply Air Out » (sortie de l'air fourni) de façon à obtenir le débit d'air désiré. Suivez les étapes 1-3 afin de régler le registre « Exhaust Air Out » (sortie de l'air vicie).
SYSTÈME DE CONTRÔLE À BASSE TENSION

* Veuillez voir les instructions individuelles des contrôles pour le câblage et la mise en pièce appropriée.

CONTRÔLES CENTRAUX
Ces options de contrôle peuvent seulement être utilisé individuellement

<table>
<thead>
<tr>
<th>CONTRÔLE</th>
<th>CARACTÉRISTIQUES</th>
<th>CONNEXION À</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO-Touch®</td>
<td>• Notre système de contrôle le plus complet, mais facile à utiliser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Conception élégante avec un écran tactile rétro-éclairé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mode ECO sélectionne le meilleur mode de fonctionnement pour la saison, en réduisant les coûts d’énergie grâce au mode de ventilation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gamme d’humidité relative réglable et le mode de ventilation pour les conditions de jour et de nuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Indicateur rappel d’entretien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Messages d’erreur de code réduit le temps de dépannage</td>
<td></td>
</tr>
</tbody>
</table>

EDF7	• Le bouton MODE fournit trois mode de fonctionnement: Ventilation, Recirculation et en attente	![Connexion](image)
	• Sélection de la vitesse du ventilateur par l’utilisateur : Vitesse Réduite, vitesse moyenne, vitesse normal et 20 min/h	
	• Réglage AUTO permet au propriétaire de désactiver le déhumidistat	
	• Lorsque le d’humidité relative désiré excède le point désiré, le système de ventilation fonctionne à vitesse normale.	
	• Une fois le niveau d’humidité désiré est atteint, votre système de ventilation retourne à son mode de fonctionnement précédent	

EDF1	• Appuyez le bouton pour une vitesse réduite continue	![Connexion](image)
	• Appuyez le bouton une seconde fois, l’appareil fera un cycle de 20 minutes ON/40 minutes OFF et répéter	
	• Appuyez le bouton une troisième fois et le système fonctionnera en haute vitesse continuellement	

CONTRÔLES AUXILIAIRES – Ces contrôles peuvent être combinés

RTS2*	• Minuterie de 20 minutes avec lumière DEL	![Connexion](image)
	• Stimule le système à haute vitesse avec le toucher d’un bouton	
	• Jusqu’à cinq peuvent être utilisés dans un système	
	• Utilisation pour salle de bain, cuisine, buanderie	

RTS5	• Minuterie de 20/40/60 minutes avec lumière DEL	![Connexion](image)
	• Stimule le système à haute vitesse avec le toucher d’un bouton	
	• Jusqu’à 5 peuvent être utilisés dans un système	
	• Utilisation pour salle de bain, cuisine, buanderie	

MDEH1	• Déshumidistat cadran rotatif	![Connexion](image)
	• Multiple appareil peuvent être utilisés	
	• Nous vous recommandons de régler l’humidité relative au-dessus de 80% au cours de l’été	

1. Assurez-vous que l’appareil n’est pas branché lors de la connexion des contrôles.
2. Le mode de recirculation est seulement disponible lorsqu’il y a le suffixe R à la fin du numéro de modèle.
Respectez la polarité sur tous les accessoires de contrôles. Le cas échéant.
Câblage standard de synchronisation avec une fournaise

Contact de commande des accessoires secondaires

Ne raccordez jamais un courant alternatif de 120V aux bornes de synchronisation de la fournaise. N'utilisez que le conduit basse tension de classe 2 de la commande du ventilateur de la fournaise.
<table>
<thead>
<tr>
<th>Problème</th>
<th>Causes</th>
<th>Solutions</th>
</tr>
</thead>
</table>
| L'air est trop sec | - Le déshumidistat est réglé trop bas
- Le VRC est déséquilibré | - Augmentez le niveau voulu d'humidité. Faites passer le mode de ventilation de « continu » à « attente ».
- Équilibrez le VRC. |
| L'air est trop humide | - Le déshumidistat est réglé trop haut
- Brusque changement de température
- Entreposez d'une trop grande quantité de bois de chauffage
- L'évent de la sécheuse est à l'intérieur de la maison
- Le VRC est déséquilibré
- La porte du sous-sol est fermée
- Le registre du système de dégivrage fait défaut et demeure en mode de recirculation | - Réduisez le niveau voulu d'humidité. Combinez cette méthode avec le fonctionnement de l'appareil en mode d'échange « continu ».
- En hiver, attendez que la température extérieure se stabilise. Le chauffage permettra également d'améliorer la situation.
- Entreposez la plus grande partie du bois de chauffage à l'extérieur. Même lorsque le bois est sec, une corde peut contenir plus de 20 gallons d'eau.
- Posez l'évent de la sécheuse à l'extérieur.
- Ouvrez les rideaux ou les stores.
- Ouvrez la porte ou posez une grille sur la porte.
- Vérifiez le registre. S'il demeure bloqué et ne laisse pas entrer l'air frais, demander au contracteur de vérifier le système de dégivrage. |
| Condensation permanente sur les vitres | - Mauvais réglage du déshumidistat
- Le VRC est déséquilibré
- Mauvaise circulation d'air près des fenêtres | - Réduisez le niveau voulu d'humidité. Combinez cette méthode avec le fonctionnement de l'appareil en mode d'échange « continu ».
- Équilibrez le VRC. |
| Mauvaise circulation d'air | - Les mailles de 6 mm (1/4 po) de la grille des hottes extérieures sont bouchées
- Les filtres sont colmatés
- Le noyau est obstrué
- Les grilles de la maison sont fermées ou bloquées
- Alimentation inadéquate sur place
- Le réseau de conduits limite l'efficacité du VRC
- Mauvais réglage de la commande de vitesse
- Déséquilibre du débit d'air du VRC
- Les conduits ont tombé ou ne sont plus branchés au VRC | - Nettoyez les hottes extérieures ou les événents.
- Enlevez le filtre et nettoyez-le.
- Enlevez le noyau et nettoyez-le.
- Vérifiez les grilles ou ouvrez-les.
- Demandez à un électricien de vérifier la tension d'alimentation de la maison.
- Vérifiez le réseau de conduits.
- Augmentez la vitesse du VRC (i.e. changez la vitesse de l'appareil de vitesse RÉDUITE à vitesse NORMALE avec le contrôle)
- Demandez au contracteur d'équilibrer le VRC
- Demandez au contracteur de remplacer les conduits. |
| L'air fourni est froid | - L'emplacement des grilles d'aspiration n'est pas approprié et, par conséquent, le débit d'air peut agacer les occupants de la maison
- Les grilles de la maison sont fermées ou bloquées
- La température extérieure est extrêmement froide | - Posez les grilles à une bonne hauteur sur les murs ou sous les plinthes chauffantes; posez un diffuseur ou des grilles au plafond de sorte que l'air fourni ne soit pas soufflé directement sur les occupants (p. ex. au-dessus d'un sofa).
- Diminuez la vitesse du ventilateur d'approvisionnement du VRC. Il est possible d'utiliser un petit chauffe-conduit (1 kW) pour tempérer l'air fourni.
- La circulation de l'air dans la maison est fonction de la disposition du mobilier ou de l'ouverture ou de la fermeture des portes
- Si l'air fourni est acheminé dans la conduite de retour de la fournaise, il peut être nécessaire de faire fonctionner continuellement le ventilateur de fournaise | |
| Le VRC et/ou les conduits se givent | - Le débit d'air du VRC est déséquilibré
- Le système de dégivrage du VRC est défectueux | - Demandez au contracteur en CVC d'équilibrer le VRC.
- Note : Il est prévu qu'une mince couche de givre s'accumule sur le noyau avant que l'appareil active son cycle de dégivrage. |
| Accumulation de condensation ou de glace sur le conduit isolé donnant sur l'extérieur | - Le pare-vapeur autour du conduit isolé est seulement partiellement
- L'enveloppe du conduit extérieur est percée ou déchirée | - Entourez tous les joints d'un ruban adhésif et scellez-les.
- Réparez les trous ou les déchirures dans l'enveloppe du conduit extérieur à l'aide de ruban adhésif.
- Assurez-vous que le pare-vapeur est complètement étanche. |
| DEL clignote | - État normal - Bon état de fonctionnement | - S'assurer que la plaque est branchée
- Remplacer le transformateur si nécessaire. |
| DEL ne clignote pas | - La plaque électronique n'est pas alimentée | - Note: Il est toujours recommandé de faire vérifier l'appareil par un Contracteur/Techncien certifié en CVC |
La meilleure garantie limitée sur le marché

• La meilleure garantie limitée sur le marché.

• Le noyau récupérateur de chaleur en aluminium bénéfice d’une garantie à vie limitée.

• Les moteurs dont sont dotés tous les VRC de Fantech ne nécessitent aucune lubrification et sont équilibrés en usine pour prévenir les vibrations et favoriser un fonctionnement silencieux.

• La garantie limitée est liée à une utilisation normale. Elle ne couvre pas les défauts, défauts de fonctionnement ou défaillances causés par une mauvaise installation, un mauvais traitement, une mauvaise manipulation, un usage incorrect, un cas fortuit ou toute autre circonstance indépendante de la volonté de Fantech.

• Une mauvaise installation ou un mauvais entretien peut entraîner l’annulation de la garantie.

• Tout travail non autorisé annule la garantie.

• Fantech n’est pas responsable des dommages fortuits reliés à l’utilisation du système de ventilation.

• Fantech n’est pas tenu d’assurer la présence d’un centre de service autorisé à proximité du domicile de l’acheteur ou dans sa région.

• Fantech se réserve le droit de fournir des pièces remises à neuf comme pièces de rechange.

• Les frais de transport, de retrait et d’installation sont assumés par l’acheteur.

• L’acheteur est tenu de respecter tous les codes en vigueur dans sa région.

• Les pièces, y compris les pièces de rechange posées ultérieurement, sont garanties pendant 5 ans à partir de la date d’achat de l’appareil. Les moteurs des ventilateurs sont garantis pendant 7 ans à partir de la date d’achat. S’il n’existe aucune preuve d’achat, la date associée au numéro de série devient la date du début de la période de garantie.

• Cette garantie est la seule et unique en vigueur relative au système de ventilation; toutes les autres garanties, expresses ou implicites, sont invalides. Prière de remplir la fiche de garantie et de nous la faire parvenir dans les deux semaines suivant l’achat, sinon la garantie sera annulée.

<table>
<thead>
<tr>
<th>TABLEAU D’ENTRETIEN DU VRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entretien requis</td>
</tr>
<tr>
<td>Vérifiez et nettoyez les filtres</td>
</tr>
<tr>
<td>Vérifiez le noyau récupérateur de chaleur</td>
</tr>
<tr>
<td>Vérifiez le bac de récupération et les tuyaux d’échappement</td>
</tr>
<tr>
<td>Nettoyez l’intérieur de l’appareil à l’aspirateur</td>
</tr>
<tr>
<td>Nettoyez et débloquez les hottes extérieurs</td>
</tr>
<tr>
<td>Inspectez et nettoyez le système de conduits</td>
</tr>
<tr>
<td>Entretien général par un contracteur certifié</td>
</tr>
</tbody>
</table>

* L’horaire peut être modifié au besoin. Un entretien plus fréquent pourrait être nécessaire selon la sévérité des environnements internes et externes de votre maison.

<table>
<thead>
<tr>
<th>Contracteur</th>
<th>Numéro de téléphone</th>
<th>Date de l’entretien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Les pièces, y compris les pièces de rechange posées ultérieurement, sont garanties pendant 5 ans à partir de la date d’achat de l’appareil. Les moteurs des ventilateurs sont garantis pendant 7 ans à partir de la date d’achat. S’il n’existe aucune preuve d’achat, la date associée au numéro de série devient la date du début de la période de garantie.

* Cette garantie est la seule et unique en vigueur relative au système de ventilation; toutes les autres garanties, expresses ou implicites, sont invalides. Prière de remplir la fiche de garantie et de nous la faire parvenir dans les deux semaines suivant l’achat, sinon la garantie sera annulée.
PARTS LIST • LISTE DES COMPOSANTES

<table>
<thead>
<tr>
<th>BOM #</th>
<th>Description</th>
<th>SHR150 (99213)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R2E 190 Radical, Rep. Kit</td>
<td>405520</td>
</tr>
<tr>
<td>2</td>
<td>Electrostatic Filters Kit 8.5” x 15”</td>
<td>402041</td>
</tr>
<tr>
<td>3</td>
<td>Heat Recovery Cell 9” x 9” x 15”</td>
<td>427675</td>
</tr>
<tr>
<td>4</td>
<td>Capacitors 8uF</td>
<td>410012</td>
</tr>
<tr>
<td>5</td>
<td>Kit, PCB Replacement, Board, AC</td>
<td>422677</td>
</tr>
<tr>
<td>6</td>
<td>Door Switch</td>
<td>410867</td>
</tr>
<tr>
<td>7</td>
<td>Auto-Transformer</td>
<td>411963</td>
</tr>
<tr>
<td>8</td>
<td>Control Switch</td>
<td>410213</td>
</tr>
<tr>
<td>9</td>
<td>Kit Drain Plug</td>
<td>40315</td>
</tr>
<tr>
<td>10</td>
<td>Collar, 6”, Balancing, 10mm</td>
<td>412284</td>
</tr>
<tr>
<td>11</td>
<td>Collar 6”, 24mm, LIP</td>
<td>410542</td>
</tr>
<tr>
<td>14</td>
<td>Damper Motor Assy, Repl.</td>
<td>N/A</td>
</tr>
<tr>
<td>15</td>
<td>Temperature Probe</td>
<td>40286</td>
</tr>
<tr>
<td>16</td>
<td>Door Assembly</td>
<td>445100</td>
</tr>
<tr>
<td></td>
<td>Kit, Chain</td>
<td>404261</td>
</tr>
<tr>
<td></td>
<td>Wall Support, VHR120R/150R</td>
<td>426466</td>
</tr>
<tr>
<td></td>
<td>KIT, FILTER, 2XMERV6, 8.5”x15”</td>
<td>414647</td>
</tr>
<tr>
<td></td>
<td>Wiring Diagram</td>
<td>423054</td>
</tr>
<tr>
<td></td>
<td>Installation Manual</td>
<td>427613</td>
</tr>
</tbody>
</table>

* If the first set of digits (can be between 7 and 10 digits long) of your serial number is #1004705364 or lower, your door replacement is #422806.

* Si la première série de chiffres (entre 7 et 10 chiffres) de votre numéro de série est 1004705364 ou plus bas, votre porte de remplacement est 422806.
Fantech reserves the right to make technical changes. For updated documentation please refer to www.fantech.net.